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Safety, Unintentional Risk and Accidents in the Weaponization 
of Increasingly Autonomous Technologies

Recent international attention on autonomous weapon systems (AWS) has focused on the 
implications of what amounts to a ‘responsibility gap’ in machine targeting and attack in war. 
As important as this is, the full scope for accidents created by the development and deployment 
of such systems is not captured in this debate. It is necessary to reflect on the potential for AWS 
to fail in ways that are unanticipated and harmful to humans—a broader set of scenarios than 
simply those in which international humanitarian law applies. 

Of course, any complex, hazardous technology carries ‘unintentional’ risk, and can have harmful 
results its designers and operators did not intend. AWS may pose novel, unintended forms of 
hazard to human life that typical approaches to ensuring responsibility do not effectively manage 
because these systems may behave in unpredictable ways that are difficult to prevent. Among 
other things, this paper suggests human-machine teams would, on their own, be insufficient in 
ensuring unintended harm from AWS is prevented, something that should bear on discussions 
about the acceptability of deploying these systems. This is the fifth1 in a series of UNIDIR papers 
on the weaponization of increasingly autonomous technologies.2 

Context

Advances in a variety of fields have led recently to the development of machines with increasing 
capacities for autonomous assessment and action, and which offer transformative potential for 
human society.3 As an earlier paper in this UNIDIR series noted, ‘Machines and systems that 
have increasing amounts of autonomy will require that we carefully examine aspects of our 
legal codes, privacy regulations, and health and safety policies. These technologies also raise 
fundamental questions about how we—as societies and individuals—perceive, interact with and 
relate to machines.’4 Already, evidence of such re-examination (or calls for it) can be seen in 
domains as seemingly varied as the development of self-driving cars5, drone package delivery, 

1  For more information about UNIDIR’s project ‘The Weaponization of Increasingly Autonomous Technologies’, see 
http://bit.ly/UNIDIR_autonomy.

2  UNIDIR would like to acknowledge the thoughtful contributions of the participants in an April 2016 expert meeting 
convened by UNIDIR: Darren Ansell, Gwendolyn Bakx, Aude Billard, John Borrie, David Danks, Neil Davison, Sean 
Legassick, Patricia Lewis, Pavel Podvig, Sabine Roeser, Heather Roff, Paul Scharre, Kerstin Vignard and Wendell 
Wallach. The views expressed in this paper are the sole responsibility of UNIDIR, and do not imply the endorsement 
of these participants.

3  For one accessible, if polemical, overview of some of these developments see M. Ford, The Rise of the Robots: 
Technology and the Threat of Mass Unemployment, OneWorld, 2015.

4  UNIDIR, Framing discussions on the weaponization of increasingly autonomous technologies, No. 1,  2014, p. 2: 
http://bit.ly/UNIDIR_autonomy.

5  P. Lin, ‘The ethics of autonomous cars’, The Atlantic, 8 October 2013: www.theatlantic.com/technology/
archive/2013/10/the-ethics-of-autonomous-cars/280360.

http://bit.ly/UNIDIR_autonomy
http://
www.theatlantic.com/technology/archive/2013/10/the-ethics-of-autonomous-cars/280360
www.theatlantic.com/technology/archive/2013/10/the-ethics-of-autonomous-cars/280360
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robotic health care assistance for the elderly, household cleaning robots6, and the delivery of 
lethal force by robots in certain law enforcement contexts7.

The weaponization of increasingly autonomous technologies is one domain of growing interest 
and concern at the international level. Notably, AWS (Autonomous Weapon Systems) or LAWS 
(Lethal Autonomous Weapon Systems) have been discussed over the last several years in talks 
under the auspices of the 1980 United Nations Convention on Certain Conventional Weapons 
(CCW) in Geneva8, and look likely to be on its agenda beyond 2016. Even though few, if any, 
weapon systems have yet been deployed that could be described as autonomous in any general 
way, some sense that the world is on the cusp of an era in which ‘killer robots’ could be 
developed in earnest and deployed on the battlefield.9

In terms of the hazards AWS might generate, international policy discussions have mainly 
revolved around whether there would be, in effect, a ‘responsibility gap’10 relating to machines 
deciding when, where and how to attack which objects and people in war.11 The prospect of 
militaries delegating targeting and attack decisions to machines raises a number of important 
challenges in terms of transparency, ethics and accountability with international humanitarian 
law (IHL) and human rights law.12 These questions have yet to be resolved. It has led some 
academics, industry experts and campaigners to call for a pre-emptive prohibition or moratorium 
on machines deploying such capabilities.13 A contrasting view is that it is unrealistic to think that 
emerging technological capabilities like systems for autonomous targeting and attack will be 
abandoned, or even meaningfully constrained. Rather, their emergence is a condition that must 
be managed.14 Others, including some States, suggest that issues around AWS should be handled 
within national processes of development of new technological capabilities, like those used for 
existing military weapon systems.15 In a related vein, some policy practitioners have argued that 

6  C. Metz, ‘Forget Doomsday A.I.—Google is worried about housekeeping bots gone bad’, Wired, 21 June 2016: www.
wired.com/2016/06/forget-doomsday-ai-google-worried-housekeeping-bots-gone-bad/.

7  P. Tucker, ‘Military Robotics Makers See a Future for Armed Police Robots’, Defense One, 11 July 2016: www.
defenseone.com/technology/2016/07/military-robotics-makers-see-future-armed-police-robots/129769/.

8  V. Boulanin, Mapping the debate on LAWS at the CCW: taking stock and moving forward, SIPRI, March 2016.
9  See, for instance, Human Rights Watch, Losing Humanity: The Case Against Killer Robots, 19 November 2012: www.

hrw.org/report/2012/11/19/losing-humanity/case-against-killer-robots.
10   See D.G. Johnson, ‘Technology with No Human Responsibility?’, Journal of Business Ethics, 2014, pp. 1–9: www.law.

upenn.edu/live/files/3774-johnson-d-technology-with-no-responsibility.
11   There are exceptions. In April 2016, a number of expert panelists at the CCW alluded to possible unintended risks 

AWS development and deployment would create.
12   For example, see C. Heyns, Report of the Special Rapporteur on extrajudicial summary or arbitrary executions, 

United Nations Human Rights Council, A/HRC/23/47, 2013: www.ohchr.org/Documents/HRBodies/HRCouncil/
RegularSession/Session23/A-HRC-23-47_en.pdf.

13   Future of Life Institute, Autonomous weapons: An open letter from AI & robotics researchers, 28  July 2015: www.
futureoflife.org/AI/open_letter_autonomous_weapons.

14   B. Allenby, ‘Emerging technologies and the future of humanity’, Bulletin of the Atomic Scientists, 2015, vol. 71, no. 6, 
pp. 29–38, p. 36: ‘we need to stop thinking of “problems” with “solutions”, and think more in terms of “conditions” 
that will require long-term, adaptive management. Challenges such as ISIS and climate change will not be solved, 
but they can and must be managed in light of other relevant goals. In this, the experience with nuclear weapons is 
instructive: They are not a problem that can be unmade, but they are a condition that can be, and has so far been, 
relatively successfully managed.’

15  For example, obligations under Article 36 of the Protocol Additional to the Geneva Conventions of 12 August 1949, 
and relating to the Protection of Victims of International Armed Conflicts (Protocol I), 8 June 1977.

http://www.wired.com/2016/06/forget-doomsday-ai-google-worried-housekeeping-bots-gone-bad/
http://www.wired.com/2016/06/forget-doomsday-ai-google-worried-housekeeping-bots-gone-bad/
www.defenseone.com/technology/2016/07/military-robotics-makers-see-future-armed-police-robots/129769/
www.defenseone.com/technology/2016/07/military-robotics-makers-see-future-armed-police-robots/129769/
https://www.sipri.org/publications/2016/eu-non-proliferation-papers/mapping-debate-laws-ccw-taking-stock-and-moving-forward
http://www.hrw.org/report/2012/11/19/losing-humanity/case-against-killer-robots
http://www.hrw.org/report/2012/11/19/losing-humanity/case-against-killer-robots
http://www.law.upenn.edu/live/files/3774-johnson-d-technology-with-no-responsibility
http://www.law.upenn.edu/live/files/3774-johnson-d-technology-with-no-responsibility
http://www.ohchr.org/Documents/HRBodies/HRCouncil/RegularSession/Session23/A-HRC-23-47_en.pdf
http://www.ohchr.org/Documents/HRBodies/HRCouncil/RegularSession/Session23/A-HRC-23-47_en.pdf
www.futureoflife.org/AI/open_letter_autonomous_weapons
www.futureoflife.org/AI/open_letter_autonomous_weapons
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all AWS should be subject to ‘meaningful human control’ (MHC)16 in individual attacks. MHC has 
not been tightly defined—let alone generally agreed—by States, though some have lent their 
support to the concept in their CCW statements.17

Reflecting on responsibility

Apportioning responsibility for targeting and the consequences of individual attacks caused by 
AWS takes us so far. But is it enough? Features in the development of some of these systems, 
such as some machine learning techniques, suggest an increased potential for novel problems in 
complex and ambiguous real world environments, including—but not limited to—those in which 
IHL applies.

Experts themselves have begun to call for more studied attention to understanding and 
preventing machine learning-related accidents, which some have defined as ‘unintended and 
harmful behaviour that may emerge from machine learning systems when we specify the 
wrong objective function, are not careful about the learning process, or commit other machine 
learning-related implementation errors.’18 At present, because many of the applications of such 
autonomous systems are in their infancy, the consequences of such accidents are probably 
limited. However, this is likely to change in time, not least if there is further convergence 
between the development of autonomous systems based upon machine learning and efforts to 
weaponize them.

A second reason for critical reflection by policy makers is that no technology is fail-safe. 
Moreover, it is understood from the operation of existing hazardous technologies of various 
kinds that despite careful design and operation, catastrophic failure is a persistent risk. This is 
due, as will be shown, to complexity and tight coupling in these systems, which periodically lead 
to ‘system accidents’ at odds with the intentions of their designers and operators—even when 
robust accountability procedures exist.19 At least some AWS would likely be complex and tightly 
coupled, or be embedded within broader complex, tightly coupled systems. 

A third reason for reflection is that some experts emphasize the necessity of humans and 
machines working as teams—or joint cognitive systems (JCS)—with each doing what it is best at, 
as a satisfactory way of managing increasing autonomy in weapons. However, to what extent are 
JCS really a solution to preventing AWS-related accidents? Research from aerospace, for instance, 
has shown that increasing machine autonomy can make the user’s job more complicated. The 
cognitive workload of the human in the system sometimes increases substantially, and they 
can suffer from lower situational awareness because it often leaves them out of the loop and 
struggling to understand what the system is doing so as to supervise and intervene in time-
critical situations.20

16  For instance, see Article 36, Structuring debate on autonomous weapons systems, Article 36 briefing paper, 
November 2013: www.article36.org/wp-content/uploads/2013/11/Autonomous-weapons-memo-for-CCW.pdf.

17  UNIDIR, The weaponization of increasingly autonomous technologies: Considering how Meaningful Human Control 
might move the discussion forward, no. 2, 2014: http://bit.ly/UNIDIR_autonomy.

18  D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman and D. Mané, ‘Concrete Problems in AI Safety’, arXiv, 
July 2016: https://arxiv.org/pdf/1606.06565v2.pdf, pp. 1–2.

19  C. Perrow, Normal Accidents: Living With High-Risk Technologies, Basic Books, 1984.
20  See M.R. Endsley, ‘Building resilient systems via strong human systems integration’, Defense AT&L, (Jan–Feb 2016), 

pp. 6–12, p. 11: dau.dodlive.mil/files/2015/12/Endsley.pdf.

www.article36.org/wp-content/uploads/2013/11/Autonomous-weapons-memo-for-CCW.pdf
http://bit.ly/UNIDIR_autonomy
https://arxiv.org/pdf/1606.06565v2.pdf
dau.dodlive.mil/files/2015/12/Endsley.pdf
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Description of terms

Autonomous systems are those that operate without human intervention in the physical world or 
some kind of digital or virtual environment. Autonomous systems select actions that operate upon that 
environment based on some kind of assessment of the environment’s current state. Usually this will be 
in pursuit of some set of pre-specified goals. (This distinguishes them from purely automated systems—
the latter are governed by prescriptive rules that permit no deviations.21) One point of distinction within 
the category of autonomous systems some have made is that, in broad terms, ‘systems incorporating 
autonomy at rest operate virtually, in software, and include planning and expert advisory systems, 
whereas systems incorporating autonomy in motion have a presence in the physical world and include 
robotics and autonomous vehicles.’22

Autonomy in weapon systems is understood, for the purposes of this paper, as a spectrum of capability 
‘moving from remotely controlled systems on one side to autonomous weapon systems on the other. 
Autonomy increases as one moves along the spectrum from objects controlled by human operators from 
a distance (such as remotely piloted unmanned aerial vehicles), to automatic and automated systems, to 
fully autonomous ones.’23 Currently, there is no settled definition of AWS at the international level. This 
paper aligns itself with common definitions of AWS as ‘robot weapons that once launched will select 
and engage targets without further human intervention.’24 A point to bear in mind, however, is that if 
autonomous systems at rest become intimately involved in targeting advice, selection and strike planning 
before launch, this definition may be insufficient in order to consider the breadth of potential AWS 
failures. 

Artificial intelligence (AI) is an imprecise but commonly used term. Sometimes it refers to the long-term 
horizon of software systems with a quality often referred to as general or general-purpose intelligence. Yet 
AI is also often referred to as more immediate software techniques that can tackle problems previously 
thought to require human intelligence. The distinction is sometimes couched in terms of general AI and 
narrow AI. However, what happens to be considered ‘narrow AI’ changes over time. An iconic example is 
chess-playing: where once a computer chess player capable of defeating a human being was considered 
very much the province of AI, today’s smartphone chess apps can beat most, if not all, humans. Yet it is 
clear that this does not make chess apps or the ‘smart’ phones they run on general-purpose intelligence. 
There is a lot of excitement about the autonomous systems it might be possible to build with AI 
technologies, for instance truly autonomous vehicles. However, autonomous systems are not necessarily 
AI, and systems built using AI are not necessarily autonomous.

Machine learning is a specific approach to AI, and one that has achieved much success over the last five to 
ten years. By way of example, machine learning is currently used in applications for automatic translation, 
photo labelling, spam detection, and video recommendations. There are many different approaches 
within machine learning, although generally speaking it involves ‘training’ a statistical model with some 
input data (normally in large volumes) so that the model produces useful output when presented with 
novel data. How ‘usefulness’ is determined depends to some extent on the type of machine learning in 

21  United States Department of Defense (DoD), Report of the Defense Science Board Summer Study on Autonomy, 
June 2015, p. 4.

22  United States DoD, Report of the Defense Science Board Summer Study on Autonomy, p. 5.
23  UNIDIR, Framing discussions on the weaponization of increasingly autonomous technologies, no. 1, Geneva, 2014, 

p. 2: http://bit.ly/UNIDIR_autonomy. This paper also sets out a list of variables that can comprise assessments of 
autonomy.

24  J. Altman, P. Asaro, N. Sharkey and R. Sparrow, ‘Armed military robots: editorial’, Ethics and Information Technology, 
vol. 15, 2013, pp. 73–76, p. 73.

http://bit.ly/UNIDIR_autonomy
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use. For example, a useful output for a photograph labeller is accurate labels for the objects depicted in a 
photo, and for a spam detector it would be a simple binary (i.e. spam/not spam).

Failure in the context of AWS in this paper refers to ‘actual or perceived degradation or loss of intended 
functionality or inability of the system to perform as intended or designed. Failures can result from a 
number of causes, including, but not limited to, human error, human-machine interaction failures, 
malfunctions, communications degradation, software coding errors, enemy cyber attacks or infiltration 
into the industrial supply chain, jamming, spoofing, decoys, other enemy countermeasures or actions, 
or unanticipated situations on the battlefield.’25 Failure might not mean that a system fails to function; it 
might still do so, but in a very altered way. Figure 1 provides some examples of potential causes of failure 
in AWS.

Figure 1. Examples of potential causes of failure in AWS

Source: based on discussion at April 2016 UNIDIR expert meeting

Accidents, as used here, are failures in AWS that result in unintended and harmful outcomes for humans. 
By nature of their design and operation, AWS would be intended to cause harm to human beings within 
certain parameters. So, accidents involving AWS constitute events in which AWS cause harm to humans 
to which harm was not intended, or at a time or place not intended. Accident is a narrower term than 
‘failure’ as failures are not necessarily harmful. Accident is also a narrower term than inadvertent risk, 
which could cover phenomena other than accidents such as assumptions, processes or socio-technical 
systems that may elevate the likelihood or consequences of failures or accidents without being the direct 
cause.

25  United States DoD, DoD Directive: Autonomy in Weapon Systems (No. 3000.09), 21 November 2012, p. 14.
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Observations: accidents will happen

We now turn to five observations about safety and responsibility challenges related to AWS.

1. Accidents are inevitable in complex and tightly coupled systems

It is likely that autonomous weapon systems will be both highly complex and very tightly 
coupled. (Tight coupling means that ‘there is no slack or buffer or give between two items. What 
happens in one directly affects what happens in the other.’26) In complex systems there are a 
lot of common mode connections between components, which means it is not necessarily clear 
which of them has gone wrong when there is a failure. 

History shows that certain kinds of system for the management of hazardous technology 
possessing significant levels of automation can fail in ways not anticipated by their human 
designers and operators.27 In those contexts, apparently simple or trivial errors or failures can 
rapidly engender situations in which ‘system’ failures occur. Serious accidents sometimes result. 
This is because these systems’ complex and tightly coupled nature hides crucial phenomena from 
the view of the human operators—either literally, or because things occur too quickly for them 
to respond sufficiently. Events such as the Chernobyl nuclear reactor meltdown in 1986, the 
destruction of two NASA space shuttles with the loss of their entire crews, and the Deep Water 
Horizon oil rig disaster in 2010 show that catastrophic failures occur despite careful technological 
design and planning, organizational control and training, and the addition of multiple technical 
redundancies.

Hidden interactions in complex systems can create feedback loops that are invisible to operators 
for a time because their existence cannot be directly detected, only inferred. Operators may not 
understand these feedback loops—or even realize they exist—if these are situated outside their 
mental models of how the system works. As Perrow observed of the 1979 Three Mile Island 
nuclear accident, ‘seeing is not necessarily believing: sometimes we must believe before we can 
see’.28 In that case, the human operators of the nuclear power plant literally did not believe 
some of the readings their instrumentation gave them, because it did not fit with their belief 
about how the plant could technically operate. Hidden interactions can happen despite careful 
design and testing of the system.

Handing controls and decisions off to machines can sometimes help in the management of 
hazardous technologies. But experts have also observed that such delegation can decrease 
the flexibility of the operator to correct minor failures before they can become major ones, 
and masks the hidden interactions discussed above. Autonomous systems such as remote 
submersibles29 or stealthy unmanned aerial vehicles30, for instance, might be accorded 

26  Perrow, Normal Accidents, pp. 89–90.
27  Operator here means the human agent(s) who establish the parameters for the autonomous functions of a technology 

to operate, who monitor its operation—however distantly—and who, presumably, would be held accountable for 
accidents or mishaps involving that system. See presentation by J. Borrie, ‘Safety aspects of “meaningful human 
control”: Catastrophic accidents in complex systems’, at UNIDIR event “Weapons, Technology and Human Control”, 
New York, 16 October 2014: http://bit.ly/UNIDIR_autonomy. A human in a JCS would constitute an operator.

28  Perrow, Normal Accidents, p. 9.
29  UNIDIR, Testing the Waters: The weaponization of increasingly autonomous technologies in the maritime 

environment, no. 4, 2015: http://bit.ly/UNIDIR_autonomy.
30  See also United Nations Office for Disarmament Affairs, Study on Armed Unmanned Aerial Vehicles Prepared on the 

Recommendation of the Advisory Board on Disarmament Matters, United Nations, October 2015, pp. 47–8: www.

http://bit.ly/UNIDIR_autonomy
http://bit.ly/UNIDIR_autonomy
www.un.org/disarmament/publications/more/drones-study/
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considerable contextual latitude to decide and act by their operators because of challenges to 
continuous or even regular communication. It is thus possible to envisage AWS interactions 
being obscured. Pointing to instances of ‘flash crashes’ in financial systems—where unintended 
interactions between autonomous trading algorithms were exacerbated by the high speed of the 
transactions themselves—some experts have raised concerns about unanticipated and emergent 
behaviour in future AWS.31

2. Hidden interactions have particular risk potential in systems reliant on machine 
learning

The kinds of capabilities militaries desire from autonomous machine systems are likely to require 
the application of machine learning techniques in order to be realized.

Machine learning can be immensely powerful when applied to suitable problems. Moreover, 
machine learning systems can exhibit capabilities that were previously intractable for computer 
software. One recent public demonstration of success in this field was AlphaGo, an AI built 
by DeepMind (owned by Google), which defeated a top human Go player in 2016.32 Another 
example of machine learning’s application is for improving medical diagnosis, something to which 
Watson, a system developed by IBM and which earlier achieved fame in winning at a television 
game show called Jeopardy, has been turned to.33

Meanwhile, many of the tasks of a soldier are dirty, dull or dangerous. Increasingly autonomous 
machines offer humans the prospect of relief from some of these tasks. As a consequence, 
robots with some degree of autonomy in motion are already making their way into military 
roles34 whether as ‘pack-bots’, kits to allow supply trucks to ‘self-drive’ in supply convoys, or 
swarming small marine vessels to protect naval vessels from suicide attacks. But not all of these 
systems depend on machine learning techniques. And, for now, outside of very constrained 
contexts such as close-in air defence (systems sometimes described as being semi-autonomous), 
decisions about targeting and attack in war remain in human hands.

However, as increasingly autonomous machines and systems of machines become an accustomed 
part of the fabric of life in some militaries—and indeed in the wider civilian world—the prospect 
of their use for targeting and attack functions may well grow, especially as war becomes ever 
more kinetic, and novel roles are envisaged. 

•	 For instance, unmanned combat aerial vehicles (UCAVs) are becoming more sophisticated, 
and future systems may be able to operate in differing modes with different levels of 

un.org/disarmament/publications/more/drones-study/.
31  See presentation by P. Scharre, ‘Flash War: Autonomous weapons and strategic stability’, at UNIDIR event 

“Understanding Different Types of Risk”, Geneva, 11 April 2016: http://bit.ly/UNIDIR_autonomy; see also Australian 
Broadcasting Corporation, ‘Interview: Robotics—Professor Noel Sharkey’, 21 May 2015: www.abc.net.au/lateline/
content/2015/s4240313.htm.

32  C. Metz, ‘How Google’s AI Viewed the Move No Human Could Understand’, Wired, 14 March 2016: www.wired.
com/2016/03/googles-ai-viewed-move-no-human-understand.

33  N. Leske, ‘Doctors seek help on cancer treatment from IBM supercomputer’, Reuters, 9 February 2013: in.reuters.
com/article/ibm-watson-cancer-idINDEE9170G120130208.

34  See for instance, P. Tucker, ‘These Are the Decisions the Pentagon Wants to Leave to Robots’ Defense One, 
14 December 2015: www.defenseone.com/technology/2015/12/these-are-decisions-pentagon-wants-leave-
robots/124480.

www.un.org/disarmament/publications/more/drones-study/
http://bit.ly/UNIDIR_autonomy
www.abc.net.au/lateline/content/2015/s4240313.htm
www.abc.net.au/lateline/content/2015/s4240313.htm
www.wired.com/2016/03/googles-ai-viewed-move-no-human-understand
www.wired.com/2016/03/googles-ai-viewed-move-no-human-understand
in.reuters.com/article/ibm-watson-cancer-idINDEE9170G120130208
in.reuters.com/article/ibm-watson-cancer-idINDEE9170G120130208
http://www.defenseone.com/technology/2015/12/these-are-decisions-pentagon-wants-leave-robots/124480
http://www.defenseone.com/technology/2015/12/these-are-decisions-pentagon-wants-leave-robots/124480
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autonomy—from remotely piloted to mostly or even fully autonomous.35 It has been 
proposed, for example, that the U.S. Navy incorporate UCAVs into its carrier airwings over 
the next decade to remedy perceived deficiencies in littoral deep-strike capabilities.36

•	 Autonomous marine systems of various kinds are being developed and tested now by 
navies for tasks such as surveillance, mapping and mine detection, and there is interest in 
using autonomous systems for area denial, or tracking and destroying submarines in the 
future.37 

Machine learning techniques are relevant to enabling or improving the performance of all of 
these kinds of systems. This is because automation governed by prescriptive rules that permit 
no deviations will be insufficient to ensure they can achieve the goals of their human operators.

Meanwhile, machine learning-based techniques in autonomy at rest systems conceivably have no 
less important roles to play in the military sphere than autonomy in motion systems like robot 
weapons. Systems that process large amounts of sensory and intelligence data in order to aid 
military decision making and logistics planning hold obvious appeal for the military advantage 
this might convey38—capabilities that might eventually extend to pre-vetting and even selecting 
targets in ways that shape decision makers’ perceptions.

This has major implications for safety because, for all of their promise, machine learning-based 
systems present challenges:

•	 Machine learning systems, and in particular neural networks and similar architectures, are 
complex. Their effectiveness is the result of their mathematical properties and complex 
relationships between opaque internal parameters. It means that even the operators 
running the systems do not have a complete understanding of the underlying learned 
logic of, say, a trained deep learning network.

•	 Currently it is not possible to produce formal proofs of the behaviour of machine learning 
systems. This poses challenges for attaining the levels of formal verification that are 
demanded for many software code-based systems, especially for systems performing 
critical functions on which human lives may rely.

•	 Machine learning systems are stochastic, and so predictability is a challenge. The machine 
is not constrained by human experience or expectations.39 Systems can be tested, and 
their behaviour observed in a range of scenarios—but this is a long way from formal 
verification.

•	 Interpretability (the ability to analyse and assess the ‘learnt logic’ on a machine learning 
system) is in its infancy. At present, techniques are crude.

35  See United Nations Office for Disarmament Affairs, Study on Armed Unmanned Aerial Vehicles, Chapter 3.
36  J. Hendrix, Retreat from Range: The Rise and Fall of Carrier Aviation, Center for a New American Security, October 

2015: https://s3.amazonaws.com/files.cnas.org/documents/CNASReport-CarrierAirWing-151016.pdf.
37  D. Hambling, The Inescapable Net: Unmanned Systems in Anti-Submarine Warfare (BASIC Parliamentary Briefings 

on Trident Renewal), British-American Security Information Council, 2016.
38  See United States DoD, Defense Science Board Summer Study on Autonomy, especially Chapter 4 (‘Strengthening 

operational pull for autonomy’).
39  For a discussion, see J. Tapson, ‘Google just proved how unpredictable artificial intelligence can be’, Business Insider 

UK, 19 March 2016: uk.businessinsider.com/google-just-proved-how-unpredictable-artificial-intelligence-can-
be-2016-3.

https://s3.amazonaws.com/files.cnas.org/documents/CNASReport-CarrierAirWing-151016.pdf
uk.businessinsider.com/google-just-proved-how-unpredictable-artificial-intelligence-can-be-2016-3
uk.businessinsider.com/google-just-proved-how-unpredictable-artificial-intelligence-can-be-2016-3


9

•	 Machine learning systems tend to be tightly coupled. Many applications involve a single 
deep learning network that is largely opaque once it is trained.

In view of the challenges above, most current civilian applications of machine learning systems 
provide humans with tools—complementing and augmenting human expertise, rather than 
replacing it. Humans playing a key role in control of the overall system (whatever that may be) 
is generally seen as vital to its safe and reliable functioning. In particular, observability of the 
internal processes of machine learning-based systems, and directability if these make errors, are 
important principles for safety.

Where machine learning is being used in civil uses of autonomous systems such as autonomous 
cars, a hybrid of machine learning, handcrafted rule sets and ‘fail-safes’ are used. Even then, 
formally verifying the behaviour of machine learning subcomponents is a risk mitigation 
challenge. For instance, the autonomous vehicle project at Google has completed more than two 
million kilometres of road testing in real driving conditions, and Google has said that considerably 
more testing will be needed before it puts such vehicles into production.40

It is hard to envisage what an equivalent level of testing and fail-safes would look like for AWS 
making targeting and attack decisions based on machine learning. After all, AWS would be 
designed to kill, which could worsen the consequences of lethal accidents when they occur. The 
outcomes of AWS failures could include fratricide, civilian casualties, or unintended escalation in 
a crisis as machines pursue emergent yet inexplicable goals such as area denial (to friendlies as 
well as hostiles) that could have strategic consequences.41

It also seems to have been widely assumed that developments in autonomy ultimately depend 
on algorithms expressed in software code that can be inspected and altered by the human 
designers of the system in question—and that this constitutes a robust safeguard. However, it is 
not clear yet to what extent this safeguard can effectively prevent hidden interactions in highly 
autonomous systems, particularly those employing self-optimization routines.

3. Safety is always one of a number of competing objectives 

One influential perspective on managing the safety of hazardous technologies in complex 
organizations like militaries is so-called high reliability theory ‘whose proponents argue 
that extremely safe operations are possible, even with extremely hazardous technologies, if 
appropriate organizational design and management techniques are followed.’42 (See Table 1 for 
its characteristics.) High reliability organizations such as aircraft carrier crews, nuclear power 
plants, and air traffic control centres—which have less than their fair share of accidents—
recognize that averting errors requires reducing human variability.43 These organizations are 
constantly preoccupied with the possibility of failures that could become catastrophic.

40  A. Davies, ‘Google’s self-driving cars aren’t as good as humans—yet’, Wired, 12 January 2016: www.wired.
com/2016/01/google-autonomous-vehicles-human-intervention. For latest information on Google’s tests, including 
miles driven autonomously, see Google Self-Driving Car Project: www.google.com/selfdrivingcar/reports.

41  See presentation by P. Scharre, ‘Flash War: Autonomous weapons and strategic stability’, at UNIDIR event 
“Understanding Different Types of Risk”, Geneva, 11 April 2016: http://bit.ly/UNIDIR_autonomy.

42  S. D. Sagan, The Limits of Safety: Organizations, Accidents, and Nuclear Weapons, Princeton University Press, 2013, 
p. 13. 

43  J. Reason, ‘Human error: models and management’, British Medical Journal, vol. 320, 2000,  pp. 768–770.

http://www.wired.com/2016/01/google-autonomous-vehicles-human-intervention
http://www.wired.com/2016/01/google-autonomous-vehicles-human-intervention
http://bit.ly/UNIDIR_autonomy
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However, others have characterized high reliability theory as an optimistic view. In reality, safety 
is just one of a number of priorities for large, complex organizations. Nuclear weapon early 
warning and launch systems, for instance, represent a compromise between making sure that 
arsenals are kept safe and secure, and ensuring they are usable and ready to launch at very 
short notice if needed. In practice, designers and operators of AWS are likely to face analogous 
dilemmas between ensuring such systems do not cause accidents, and giving these systems the 
level of autonomy intended to convey military advantage. A military commander, for instance, 
might feel that operational signals silence is more important in a given situation (say, to ensure 
tactical surprise against an adversary) than an operator being able to monitor the processes and 
behaviour of an AWS in the field in order to shut it down or override it if it begins to act unsafely. 
Nor would a military commander presumably want ‘friendly’ AWS acting too predictably, if it 
makes it easier for the adversary to counter their capabilities.

‘Normal accidents theory’ (see Table 1) presents a much more pessimistic prediction of safety—
that ‘serious accidents with complex high technology systems are inevitable’.44 Despite the 
best efforts of high reliability organizations, the world has come within a whisker of the use of 
nuclear weapons on more than one occasion, for instance, with only the intuition and initiative 
of individual human beings avoiding disaster.45

Table 1. Competing perspectives on safety with hazardous technologies

High Reliability Theory Normal Accidents Theory
Accidents can be prevented through good 
organizational design and management

Accidents are inevitable in complex and tightly 
coupled systems

Safety is the priority organizational objective Safety is one of a number of competing 
objectives

Redundancy enhances safety: duplication and 
overlap can make ‘a reliable system out of 
unreliable parts’

Redundancy often causes accidents: it 
increases interactive complexity and 
opaqueness and encourages risk-taking

Decentralized decision-making is needed 
to permit prompt and flexible field-level 
responses to surprises

Organization contradiction: decentralization 
is needed for complexity, but centralization is 
needed for tightly coupled systems

A ‘culture of reliability’ will enhance safety 
by encouraging uniform and appropriate 
responses by field-level operators

A military model of intense discipline, 
socialization, and isolation is incompatible 
with democratic values

Continuous operations, training, and 
simulations can create and maintain high 
reliability operations

Organizations cannot train for unimagined, 
highly dangerous, or politically unpalatable 
operations

Trial and error learning from accidents can 
be effective, and can be supplemented by 
anticipation and simulations

Denial of responsibility, faulty reporting, and 
reconstruction of history cripples learning 
efforts

Reproduced from Sagan, The Limits of Safety, p. 46.

44  Sagan, The Limits of Safety, p. 13.
45  See, for instance, E. Schlosser, Command and Control, Allen Lane, 2013, and P. Lewis et al, Too Close for Comfort: 

Cases of near nuclear use and options for policy, Chatham House, 2014.
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AWS pose the question of whether established techniques for achieving high reliability standards 
of operation in complex human organizations are meaningful goals for systems that by their 
very description will operate largely or almost entirely separate from direct human control or 
oversight. In this context, a ‘culture of reliability’ among human operators may not be enough. 
Low observability and complexity of the internal processes of AWS may undermine predictable 
operation in which accidents can be reliably avoided.

A related point is that the adversary is actively conspiring against success in ways that may be 
unanticipated. This would plausibly extend to active countermeasures against the other side’s 
AWS, such as jamming communication links. These measures and their consequences may 
undermine safety, or at least commitment to safety as a prime goal (for instance, due to ‘military 
necessity’).

4. Redundancy is a cause of accidents

Redundancies are features added to a system that are intended by the designer to compensate 
for failures in the system’s components. (A simple illustration of this is a reserve parachute, 
carried by a skydiver in case their main parachute fails.) Redundancies might also be added to a 
system to try to compensate for errors or shortcomings of human operators.

Perhaps counterintuitively, redundancy has been shown to be a cause of accidents in the 
management of hazardous technologies because it increases interactive complexity and 
opaqueness, and the chance of hidden interactions. With respect to the system, more ‘moving 
parts’ means more things to fail, or interact with other aspects of the system in unanticipated 
ways. This can make it more difficult for humans operating the system to gain an accurate picture 
of what is going on. Programmable autopilot systems, which have many benefits in aviation, are 
a case in point. Historically, accidents involving autopilots have occurred—even when the system 
was functioning correctly—due to a variety of reasons, including interface problems, distracted 
operators, or human pilots possessing an inaccurate mental picture of what the system is doing. 

In this respect, developers and operators of high-technology systems can fall into a trap called the 
substitution myth—that adding automation will substitute for human input or failings. In fact, it 
usually changes the nature of the required human input, and can instead place higher demands 
on humans in the system in order to ensure that ‘automation surprises’ such as accidents do not 
occur. This is especially a problem when three factors converge:

1. ‘Automated systems act on their own without immediately preceding directions from their 
human partner

2. Gaps occur in user’s models of how their machine partners work in different situations

3. Weak feedback is given about the activities and future behaviour of the agent relative to the 
state of the world’.46

This is obviously relevant to the discussion about autonomy in weapon systems. In the CCW, 
for example, there has been discussion about humans ‘in the loop’ as a form of redundancy for 
AWS, or—conversely—machine autonomy as a form of redundancy for human decision-making. 
This may not reliably be the case because for all three factors listed above, humans are likely 

46  D. Woods, ‘Automation surprises’ in D. Woods and E. Hollnagel, Joint Cognitive Systems: Patterns in Cognitive 
Systems Engineering, CRC Press, 2006, pp. 113–142, p. 121.
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to have a highly incomplete picture of what the systems they are operating are doing. Such low 
observability in autonomous systems could thus increase the risk of accidents, not least because 
what cannot be observed and understood is not directable. Accidents could occur simply because 
operators cannot diagnose and respond effectively to ‘automation surprises’47 as quickly as is 
necessary to prevent an unsafe deviation from the intended activity.

Redundancy can also encourage risk taking by operators. According to risk compensation theory, 
people typically adjust their behaviour in response to a perceived level of risk, and so could be 
lulled into over-complacency by the autonomous features of a system. Indeed, automation bias 
(complacency or over-reliance on automated systems) has been a cause of accidents across a 
range of fields from aviation to clinical decision support systems used in medicine.48 In observing 
that ‘humans have a tendency to disregard or not search for contradictory information in light of 
a computer-generated solution that is accepted as correct and be exacerbated in a time critical 
domain’, experts argue designers of ‘intelligent’ decision aids ‘must be mindful that higher 
levels of automation combined with unreliable systems can actually cause new errors in system 
operation if not designed with human cognitive limitations and biases in mind.’49

5. Development and operation of autonomous systems is not value- or bias-free

Even though machine systems might behave, for practical intents and purposes, independently of 
humans in some contexts, they ultimately derive from human policy and design choices. Those 
choices, which stem from various factors including the values of designers and policy makers, 
in turn affect the ability of humans overseeing or operating autonomous systems to foresee or 
prevent accidents from occurring. Badly designed aspects of systems such as inefficient human-
machine interfaces or inappropriate uses for highly autonomous technology exacerbate the risk 
of accidents.

Design and values

Design and testing are rarely linear in the development of any technical system. Designers always 
have to design relative to constraints of various kinds (e.g. cost, time, available technology) in 
trying to respond to a specified goal or function of a system. Moreover, there are almost always 
many possible designs. However, the choices of the designer also reflect factors such as their 
values and those of the socio-technical system they design within (for example, what level of 
risk is acceptable in a given design? How much can be left to chance in terms of validating that 
the design works as intended—and only as intended?). An important related question is what 
designers and operators do not want a system to do, and which values this reflects. Ultimately, 
the choices of designers are based on a variety of factors, including their values, biases and 
assumptions about the role autonomy plays.

In general, designers find it undesirable to have machines acting contrary to their values. 
However, as ethicists and computer scientists have discovered, it is difficult to define human 
values and translate them into the design of machine learning systems because often these 

47  See Woods, ‘Automation surprises’.
48  K. Goddard, A. Roudsari, and J.C. Wyatt, ‘Automation Bias: A Systematic Review of Frequency, Effect Mediators, and 

Mitigators’, Journal of the American Medical Informatics Association, vol. 19, no. 1, 2012, pp. 121–127.
49  M. Cummings, ‘Automation Bias in Intelligent Time Critical Decision Support Systems’, American Institute of 

Aeronautics and Astronautics 1st Intelligent Systems Technical Conference, 2004, p. 1 and p. 5: wayback.archive.
org/web/20141101113133/http://web.mit.edu/aeroastro/labs/halab/papers/CummingsAIAAbias.pdf.

http://wayback.archive.org/web/20141101113133/http://web.mit.edu/aeroastro/labs/halab/papers/CummingsAIAAbias.pdf
http://wayback.archive.org/web/20141101113133/http://web.mit.edu/aeroastro/labs/halab/papers/CummingsAIAAbias.pdf
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depend on an understanding of context that is beyond the relatively ‘narrow’ intelligence these 
systems have. This issue becomes especially acute in autonomous systems because, to a greater 
or lesser extent, they may be involved in their own proximate goal setting.

In this regard AI researchers recently highlighted five problems or possible failure modes that 
designers should take account of in applying machine intelligence-using AI for use in real world 
circumstances. To illustrate these problems, they used the simple hypothetical example of a 
cleaning robot:

•	 ‘Avoiding Negative Side Effects: How can we ensure that our cleaning robot will not 
disturb the environment in negative ways while pursuing its goals, e.g. by knocking over a 
vase because it can clean faster by doing so? Can we do this without manually specifying 
everything the robot should not disturb?

•	 Avoiding Reward Hacking: How can we ensure that the cleaning robot won’t game its 
reward function? For example, if we reward the robot for achieving an environment 
free of messes, it might disable its vision so that it won’t find any messes, or cover over 
messes with materials it can’t see through, or simply hide when humans are around so 
they can’t tell it about new types of messes.  

•	 Scalable Oversight: How can we efficiently ensure that the cleaning robot respects aspects 
of the objective that are too expensive to be frequently evaluated during training? For 
instance, it should throw out things that are unlikely to belong to anyone, but put aside 
things that might belong to someone (it should handle stray candy wrappers differently 
from stray cellphones). Asking the humans involved whether they lost anything can serve 
as a check on this, but this check might have to be relatively infrequent—can the robot 
find a way to do the right thing despite limited information? 

•	 Safe Exploration: How do we ensure that the cleaning robot doesn’t make exploratory 
moves with very bad repercussions? For example, the robot should experiment with 
mopping strategies, but putting a wet mop in an electrical outlet is a very bad idea. 

•	 Robustness to Distributional Shift: How do we ensure that the cleaning robot recognizes, 
and behaves robustly, when in an environment different from its training environment? 
For example, heuristics it learned for cleaning factory workfloors may be outright 
dangerous in an office.’50

These safety problems are generalizable to a variety of ‘learning’ autonomous systems. It is easy 
to see how this would extend to AWS. For example, how could designers ensure that an AWS 
recognizes an environment change, say from one in which it may target any unidentified moving 
vehicle, to one in which it may not, for instance because an ambulance or a bus filled with 
civilians is present (robustness to distributional shift)? Could designers ensure that in ‘training’ 
a system to, say, recognize tanks in target images, they do not inadvertently train a system that 
distinguishes targets based on some extraneous factor, like the difference in light conditions on 
cloudy days from sunny ones51 (avoiding reward hacking)?

50  D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman and D. Mané, ‘Concrete Problems in AI Safety’, p. 3.
51  Yudkowsky used this (possibly apocryphal) story of a machine learning system called a neural network, although 

actually to illustrate what he called ‘the context problem’, which relates to distributional shift: ‘This form of failure 
is especially dangerous because it will appear to work within a fixed context, then fail when the context changes.’ 
Yudkowsky, E., ‘Artificial intelligence as a positive and negative factor in global risk’, in N. Bostrom and M. Ćirković 
(eds.), Global Catastrophic Risks, Oxford University Press, 2008, pp. 308–345, p. 321.
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Operators and their limits

Proponents of joint cognitive systems (JCS) often point to the value of human beings as ‘fail 
safes’ in human-machine systems due to our capacity for contextual thinking, which among 
other things is often vital for moral decision-making. Machines can process information logically 
and, by human standards, very rapidly. But the ability of human beings to see the big picture, so 
the thinking goes, acts as an important safeguard against unintended behaviours.

In this way, some experts and policy makers feel that—for a variety of reasons—it makes most 
sense to see AWS as parts of human-machine teams rather than as a distinct category. ‘Like a 
centaur, the hybrid would have the strength of each of its components: the processing power of 
a large logic circuit and the intuition of a human brain’s wetware.’52 Proponents of this approach 
note that autonomy is relative, and argue it is unlikely, at least for the foreseeable future, that 
machines will have the capacity for targeting and attack totally divorced from human decision 
making and accountability.53 JCS must be designed that ensure humans are not left out of the 
loop of decision making, and can intervene to avert unintended behaviour from the system, if 
necessary.54

Centaur-like human-machine teams are already becoming a feature of systems of various kinds 
that have highly sophisticated levels of autonomy. However, the historical evidence for their 
effectiveness is not wholly favourable. Bad surprises including accidents involving automated 
systems such as aircraft autopilots, for instance, tend to be caused not by the behaviour of the 
machine or the human operator per se, but due to the ways in which they relate to one another, 
leading one expert to conclude:

Our fascination with the possibilities afforded by new technological powers often obscures 
the fact that new computerized and automated devices also create new burdens and 
complexities for the individuals and teams of practitioners responsible for operating, trouble 
shooting, and managing high-consequence systems.55

The vaunted capacity of human beings for contextual thinking is not without constraint, which 
has implications both for human designers and operators. All human beings are subject to a 
range of cognitive and perceptual biases that affect our decision-making. Automation bias has 
already been mentioned. However, some other common, relevant biases or limits include:

•	 Simplification: humans have an inherent tendency to simplify phenomena they encounter. 
This can have an influence on the accurate assessment of risk.

•	 Risk perception bias: people tend to be notoriously poor at accurate risk estimation, 
particularly if the phenomena or situation they encounter is a novel one. (Actual 
experience—particularly long experience—can improve judgement of risk.)

•	 Confirmation bias: the tendency to look for evidence that confirms a hypothesis, while 
failing to look for evidence that would disconfirm it.

52  W. Isaacson, ‘Brain gain: Review of “Smarter Than You Think” by Clive Thompson’, New York Times, 1 November 
2013: www.nytimes.com/2013/11/03/books/review/smarter-than-you-think-by-clive-thompson.html.

53  For instance, see United States DoD, Report of the Defense Science Board Summer Study on Autonomy.
54  For a thorough analysis, see P. Scharre, Autonomous Weapons and Operational Risk, (Ethical Autonomy Project) 

Center for a New American Security, 2016: www.cnas.org/publications/reports/autonomous-weapons-and-
operational-risk.

55  Woods, ‘Automation surprises’, p. 119.

www.nytimes.com/2013/11/03/books/review/smarter-than-you-think-by-clive-thompson.html
www.cnas.org/publications/reports/autonomous-weapons-and-operational-risk
www.cnas.org/publications/reports/autonomous-weapons-and-operational-risk
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•	 Projection bias: projecting onto others what our own, current preference is. Projection 
bias also can influence our assessment of the preferences of our own future selves.

•	 Illusion of explanatory depth: we all think we understand how systems work better than 
we actually do. Much of our understanding of cause and effect is based on association, 
without an understanding of how events are related to one another. This may lead to 
serious mistakes in understanding the reasons for AWS behaviour and trying to predict 
how AWS will behave in the future. 

Human cognitive limits are challenging to overcome through design. And, indeed, the whole 
point of increasing autonomy is to transfer decision-making responsibilities away from humans 
in the system to the degree possible. It means that having humans ‘in the loop’ is not a solution 
in itself to safety-related risks in autonomous systems. For example, Wallach observed that one 
issue in the development and use of remotely piloted UAVs using a JCS approach for safety is 
that the task of adapting to the unexpected is presumed to lie with the human member(s) of 
the team. Similar problems could be seen with AWS:

Anticipating the actions of a smart system becomes more and more challenging for a human 
operator as the system and the environments in which it operates become more complex. 
Expecting operators to understand how a sophisticated computer thinks, and anticipate its 
actions so as to coordinate the activities of a team, actually increases their responsibility.56

Beside the practical hazard this kind of practice can create, it is also raises the question of whether 
human beings should be placed in situations in which they are responsible for the behaviour 
of armed machines they might not be able to understand or fully control. Even if humans are 
held responsible for developing AWS, it is unclear under what conditions the responsibility for 
succeeding events transfers to those agents. An observation about the development of cyber 
warfare also holds for AWS, and is sobering: ‘If humans were rational in their planning and 
decisions, then assigning responsibility to originating agents might be reasonable, but neither 
people nor groups exhibit the necessary rationality or self-knowledge. In particular, people are 
frequently unable to accurately predict their future preferences, goals, and values.’57

Policy makers and responsibility

Human operators are themselves constrained in significant ways that may compound rather than 
reduce the risk of accidents in JCS. This is not simply a problem of design and operation—it is 
a ultimately a broader problem of responsibility that falls on the shoulders of those considering 
policies that allow for AWS:

‘A responsibility gap will not arise merely from the technological complexity of artificial 
agents. Artificial agents can be designed so that no human can understand or control what 
they do or they can be designed so that they are transparent and well within human control 
or they can be designed so that certain aspects or levels of the machine behavior are in 
human control and others are not. Which way they are designed depends on the humans 
involved in their development and acceptance.

56  W. Wallach, A Dangerous Master: How to Keep Technology From Slipping Beyond Our Control, Basic Books, 2015, 
p. 32.

57  D. Danks and J.H. Danks, ‘Beyond Machines: Humans in Cyber Operations, Espionage and Conflict’, in F. Allhoff, 
A. Henschke, and B.J. Strawser (eds), Binary Bullets: The Ethics of Cyberwarfare, Oxford University Press, 2016, Chapter 9, 
pp. 177–200, p. 27 of pre-print version: pdfs.semanticscholar.org/dc13/df07adca23157de149cf80f66d85381a6ee9.
pdf.

pdfs.semanticscholar.org/dc13/df07adca23157de149cf80f66d85381a6ee9.pdf
pdfs.semanticscholar.org/dc13/df07adca23157de149cf80f66d85381a6ee9.pdf
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In the past people have chosen technologies that have some degree of risk though we have 
also set up mechanisms to pressure those who make and use these technologies to operate 
them safely and to take responsibility when something goes wrong and the fault can be 
traced back to them. The future may be different, but it seems there are good reasons why 
we might resist any future in which no humans are responsible for technologies that have a 
powerful role in our lives.58

Among the reasons for resisting such a future, quite arbitrary decisions would probably have 
to be made in terms of assigning responsibility for the behaviour of AWS—behaviour based on 
processes that could be low in observability and directability. Thus, rather than vaunted human-
machine teams, JCS could create situations in which human designers and operators of AWS 
are, in effect, designated scapegoats for systems they cannot reasonably understand, let alone 
control. If these people would be little more than hostages to fortune then it is not much of a 
system of responsibility, and is also not going to contribute to reducing and preventing accidents 
involving AWS in the longer run.

Concluding thoughts

As noted earlier, policy debate until now in forums like the CCW has tended to revolve around 
how to apportion legal responsibility in situations in which, for instance, AWS violate IHL rules. 
However, it is clear that AWS pose broader responsibility challenges, which need to be considered 
alongside those specifically concerning targeting and attack in conflict, due to the nature of these 
systems, and the prospect they might cause unintended harm to humans in a broader range of 
situations. Forums like the CCW do not seem to have grappled with this yet. Yet, the prospect 
of armed autonomous systems prone to accidents must surely be an alarming one, including for 
militaries contemplating the roles for autonomous systems in their future operations.

So, what can be done for dealing with these uncertainties created by the development of AWS? 
One option would be for the precautionary principle to be applied, and for AWS systems to 
be prohibited on the basis that their risks—including the risk of accidents—are too great for 
their introduction to be considered. This might be a legally binding prohibition, or be achieved 
by means of an international moratorium until the international community agrees on clear 
standards for determining how accidents would be prevented, and how agreed standards would 
be verified. Admittedly, the prospects for this seem dim at the present time, but a general-
purpose criterion like those in the Biological and Chemical Weapons Conventions might allow for 
the development of schedules that could be changed and updated. As a basic principle of such a 
system, it would need to put the onus on those wishing to introduce AWS, however defined, to 
demonstrate their safety in order to be effective.

A second alternative, suggested by some legal scholars, would be the creation of a framework for 
effective technical standards and procedures for verification and evaluation of AWS, in addition 
to protocols to guide risk assessment, end-user information and training, and what they describe 
as ‘fail-safe’ measures. However, the likelihood of the development of such a framework within 
the ambit of Article 36 weapons review is unclear, at best. Also, while certainly vital to explore, 
the possibility of fail-safes may prove to be a pipe dream, including for reasons outlined in this 
report. Nevertheless, these scholars put their finger on an important point when they conclude 
that the risks AWS would pose ‘are diverse, and they demand an approach that adequately 

58  D.G. Johnson, ‘Technology with No Human Responsibility?’, p. 714.
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identifies and controls the risk arising from behavioural uncertainty and generates information 
that can be used to better evaluate, manage and prevent the risk of unlawful behaviour.’59

Short of this, policy makers in the CCW and more broadly could factor consideration of 
inadvertent risks, especially accidents, into their ongoing talks on issues around AWS. This might 
not solve anything, but it would at least sensitize national decision makers and experts to the 
major points of concern. Concepts like ‘appropriate human judgement’ or ‘meaningful human 
control’ are entry points for discussion. At the moment, the way these concepts are talked about 
in the CCW mostly reflects a nest of assumptions about current IHL and its sufficiency. But 
questions about appropriate judgement, meaningful control, and responsibility logically extend 
to safety and accidents. Basic questions to be answered are these: who would the international 
community hold accountable for permitting the introduction of armed machine systems that are 
inherently unpredictable and prone to accidents with lethal consequences? And how would this 
be done?

To date, some national policy makers in the CCW have preferred to ‘wait and see’ before 
committing themselves to a particular view on the acceptability of AWS. No doubt some would 
like more complete information to emerge before reaching a position. At the same time, there 
appears to be a view held by some that an AWS arms race is basically inevitable, driven by 
technological developments that offer irresistible new capabilities. In this respect, it is important 
to underline that the development of technology is shaped by social forces, not just the other 
way around. Some rationalists have argued that widespread public revulsion (the ‘ick factor’) 
about AWS can and should be ignored. But this flies in the face of significant evidence that 
emotions are an indispensable normative guide in judging the moral acceptability of technological 
risks.60 Hesitancy to do anything in the absence of a definitive picture of the shape of things to 
come on AWS may become a self-fulfilling prophecy—bringing about unanticipated and harmful 
consequences that policy makers could have avoided.

In closing, this paper has sought to reflect on the potential for AWS to fail in ways that are 
unanticipated and harmful to humans. This is a broader set of scenarios than simply those in 
which IHL applies. Of course, any hazardous technology carries ‘unintentional’ risk, and can have 
harmful results its designers and operators did not intend. AWS may pose novel, unintended 
forms of hazard to human life that typical approaches to ensuring responsibility do not prevent 
because these systems act in complex and unpredictable ways. Suggested paradigms in which 
human-machine teams are the answer to ensuring unintended harm from AWS would, on their 
own, likely be insufficient in preventing lethal accidents. Preventing accidents is not solely a 
question of design, human supervision or operation of AWS: it is only possible if policy makers 
make responsible choices about what are acceptable boundaries for development and use.

59  N. Bhuta and S. Pantazopoulos, ‘Autonomy and uncertainty: increasingly autonomous weapon systems and the 
international legal regulation of risk’, in N. Bhuta et al, Autonomous Weapons Systems: Law, Ethics, Policy, Cambridge 
University Press, 2016, p. 299.

60  S. Roeser, ‘The role of emotions in judging the moral acceptability of risks’, Safety Science, vol. 44, 2006, pp. 689–
700.



Safety, Unintentional Risk and Accidents in the 
Weaponization of Increasingly Autonomous Technologies

Recent international attention on autonomous weapon systems (AWS) has 
focused on the implications of what amounts to a ‘responsibility gap’ in machine 
targeting and attack in war. As important as this is, the full scope for accidents 
created by the development and deployment of such systems is not captured 
in this debate. It is necessary to reflect on the potential for AWS to fail in ways 
that are unanticipated and harmful to humans—a broader set of scenarios that 
simply those in which international humanitarian law applies. 

Of course, any complex, hazardous technology carries ‘unintentional’ risk, and 
can have harmful results its designers and operators did not intend. AWS may 
pose novel, unintended forms of hazard to human life that typical approaches 
to ensuring responsibility do not effectively manage because these systems may 
behave in unpredictable ways that are difficult to prevent. Among other things, 
this paper suggests human-machine teams would, on their own, be insufficient 
in ensuring unintended harm from AWS is prevented, something that should 
bear on discussions about the acceptability of deploying these systems. This 
is the fifth in a series of UNIDIR papers on the weaponization of increasingly 
autonomous technologies.
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